class: center, middle, inverse, title-slide .title[ # Skin tone penalties: ] .subtitle[ ## Skin color gaps and discrimination ] .author[ ### Guillermo Woo-Mora ] --- <style> .center2 { margin: 0; position: absolute; top: 50%; left: 50%; -ms-transform: translate(-50%, -50%); transform: translate(-50%, -50%); } </style> .center2[ # Inequalities are not colorblind ] --- <img src="https://th-thumbnailer.cdn-si-edu.com/U0PQzGNk-jKjCKl9F2boE8YxTmc=/1000x750/filters:no_upscale():focal(1615x1036:1616x1037)/https://tf-cmsv2-smithsonianmag-media.s3.amazonaws.com/filer/59/f3/59f35e12-9903-41c5-84c6-8cc8f45ab8de/gettyimages-1226884797.jpg" width="70%" style="display: block; margin: auto;" /> --- <img src="https://radio-m.net/wp-content/uploads/2023/07/justice-pour-nahel.jpg" width="70%" style="display: block; margin: auto;" /> --- <img src="https://lazzie19.files.wordpress.com/2013/07/botfq2pcqaa1qj9.png" width="90%" style="display: block; margin: auto;" /> --- .center2[ # How do you clasiffy yourself? ] --- .center2[ # How do others clasiffy you? ] --- .center2[ # How do we actually look? ] --- ## Identity -- - People think of themselves in terms of certain groups that they belong to -- > A white female French economist may identify as white, as a female, as French, or as an economist (or all or none of the above) (Shayo 2020) -- - Individuals choose their identity (Akerlof and Kranton 2000, Shayo 2020) `$$U_{iJ}(a) = \pi_i (a) - \beta_i d_{iJ}(a) + \gamma_i S_J(a)$$` -- - Inequalities through differences between groups `\(J\)` -- ## Physical attributes (phenotype) -- - Some individual aspects are not easy to change (i.e. stature, biological sex, skin tone) -- - Identities may depend on physical attributes -- - Inequalities can be directly linked to physical attributes (independent of identity) --- .center2[ # Ethnicity ≠ Race ] --- # Ethno-racial inequalities <img src="imgs/chetty2014.png" width="70%" style="display: block; margin: auto;" /> .center[ Chetty et al. (2014) ] --- # Ethno-racial inequalities <img src="imgs/chetty2014_2.png" width="70%" style="display: block; margin: auto;" /> .center[ Chetty et al. (2014) ] --- .center2[ # Other latitudes? ] --- # Latin America <img src="https://editorialverbum.es/wp-content/uploads/2021/05/La-raza-cosmica-1.jpg" width="32.5%" style="display: block; margin: auto;" /> --- # Latin America <img src="imgs/ucr_1-1.png" width="65%" style="display: block; margin: auto;" /> .center[ Woo-Mora (2023) ] --- # Latin America <img src="imgs/ucr_2-1.png" width="65%" style="display: block; margin: auto;" /> .center[ Woo-Mora (2023) ] --- # Income gaps <img src="imgs/ucr_3-1.png" width="65%" style="display: block; margin: auto;" /> .center[ Woo-Mora (2023) ] --- # Educational gaps <img src="imgs/ucr_4-1.png" width="65%" style="display: block; margin: auto;" /> .center[ Woo-Mora (2023) ] --- # Intergenerational mobility <img src="imgs/ucr_5-1.png" width="65%" style="display: block; margin: auto;" /> .center[ Woo-Mora (2023) ] --- # Intergenerational mobility gaps <img src="imgs/ucr_6-1.png" width="65%" style="display: block; margin: auto;" /> .center[ Woo-Mora (2023) ] --- .center2[ # What causes these skin tone gaps? ] --- .center2[ # Discrimination? ] --- .center[ # Discrimination? ] -- > members of a minority group (women, blacks, Muslims, immigrants, etc.) are treated differentially (less favorably) than members of a majority group with otherwise identical characteristics in similar circumstances (Bertrand and Duflo 2017) -- .center[ #### Cirmcustances may differ from the origin and cumulate through time ] -- <img src="imgs/goldin.png" width="50%" style="display: block; margin: auto;" /> .center[ Claudia Goldin ] -- .center[ #### Difficult to find contexts where groups have *identical characteristics in similar circumstances* ] --- .center2[ ## One context where individuals with different skin tones do the same task but are treated less favorably ] --- .center[ <img src="https://e0.365dm.com/16/06/2048x1152/panenka_3478366.jpg?20160604162257" width="90%" style="display: block; margin: auto;" /> ] --- # Kamel and Woo-Mora (2023) .center[ ### We exploit football as a lab ] -- - High quality headshots to infer skin tone -- - Players valuation (market value, ratings, wages) -- - Detailed information on performance -- - Situations where players do the same task (and perform equally well) but are treated differently -- .center[ <img src="imgs/sofifa.png" width="47.5%" style="display: block; margin: auto;" /> ] --- .center[ <img src="imgs/uk_kane_penalty.png" width="47.5%" style="display: block; margin: auto;" /> ] --- .center[ <img src="imgs/uk_saka_penalty.png" width="47.5%" style="display: block; margin: auto;" /> ] --- # Skin tone segmentation and classification .center[ <img src="imgs/color_classification_exp1.jpg" width="85%" style="display: block; margin: auto;" /> ] .center[ Kamel and Woo-Mora (2023) ] --- # Skin tone segmentation and classification .center[ <img src="imgs/color_classification_exp1.jpg" width="85%" style="display: block; margin: auto;" /> ] .center[ Kamel and Woo-Mora (2023) ] --- # Skin tone segmentation and classification .center[ <img src="imgs/color_classification_exp2.jpg" width="85%" style="display: block; margin: auto;" /> ] .center[ Kamel and Woo-Mora (2023) ] --- # Skin tone segmentation and classification .center[ <img src="imgs/color_classification_exp3.jpg" width="85%" style="display: block; margin: auto;" /> ] .center[ Kamel and Woo-Mora (2023) ] --- # Skin tone segmentation and classification .center[ <img src="imgs/fotmob_color_classification.jpg" width="85%" style="display: block; margin: auto;" /> ] .center[ Kamel and Woo-Mora (2023) ] --- # Skin tone penalites on fans valuation .center[ <img src="imgs/binscatter_market_value.png" width="80%" style="display: block; margin: auto;" /> ] .center[ Kamel and Woo-Mora (2023) ] --- # Test discrimination using penalty kicks .center[ <img src="imgs/goal_ratings.png" width="90%" style="display: block; margin: auto;" /> ] .center[ Kamel and Woo-Mora (2023) ] --- # Increase in post-match (algorithmic) rating if scoring penalty .center[ <img src="imgs/RD_plot.png" width="65%" style="display: block; margin: auto;" /> ] .center[ Kamel and Woo-Mora (2023) ] --- # Light-skined players have a higher increase .center[ <img src="imgs/RD_est.png" width="70%" style="display: block; margin: auto;" /> ] .center[ Kamel and Woo-Mora (2023) ] --- # Are algorithms internalizing fans preferences? .center[ <img src="imgs/binscatter_algorithm_fans_preferences.png" width="65%" style="display: block; margin: auto;" /> ] .center[ Kamel and Woo-Mora (2023) ] --- .center2[ # In summary ] --- .center[ # In summary ] -- - Identity and physical attributes play a role in inequalities -- - Ethnoracial gaps might veil skin tone gaps -- - Skin tone gaps exist and might depict systemic inequalities -- - Direct skin tone discrimination in some situations (not all inequality is attributable to discrimination) -- - More research: - Why? How? - How persistent are these attitudes? - How to change attitudes? -- .center[ ### Thanks to Javi for the invite and to you for hearing me (again)! ] -- .center[ #### Reach out if you have any comments or questions: guillermo.woo-mora@psemail.eu ]